Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Nieren und Hochdruckkrankheiten Conference ; 52(4), 2023.
Article in German | EMBASE | ID: covidwho-20232467

ABSTRACT

The proceedings contain 92 papers. The topics discussed include: cellular and humoral immune responses after SARS-CoV-2 vaccination in pediatric kidney recipients;adult outcomes of childhood-onset idiopathic nephrotic syndrome: findings from a health insurance database;the genetic landscape and clinical spectrum of nephronophthisis and related ciliopathies;translational profiling of developing podocytes during glomerulogenesis;MAGED2 is required under hypoxia for cAMP signaling by inhibiting MDM2-dependent endocytosis of G-Alpha-S;high throughput investigation of the metabolic flux of intact cortical kidney tubules;peritoneal membrane junction and solute transporter expression and function in health, CKD and PD;and Function and interaction of coronavirus ion channel proteins.

2.
Viruses ; 15(5)2023 04 23.
Article in English | MEDLINE | ID: covidwho-20236769

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) canonically utilizes clathrin-mediated endocytosis (CME) and several other endocytic mechanisms to invade airway epithelial cells. Endocytic inhibitors, particularly those targeting CME-related proteins, have been identified as promising antiviral drugs. Currently, these inhibitors are ambiguously classified as chemical, pharmaceutical, or natural inhibitors. However, their varying mechanisms may suggest a more realistic classification system. Herein, we present a new mechanistic-based classification of endocytosis inhibitors, in which they are segregated among four distinct classes including: (i) inhibitors that disrupt endocytosis-related protein-protein interactions, and assembly or dissociation of complexes; (ii) inhibitors of large dynamin GTPase and/or kinase/phosphatase activities associated with endocytosis; (iii) inhibitors that modulate the structure of subcellular components, especially the plasma membrane, and actin; and (iv) inhibitors that cause physiological or metabolic alterations in the endocytosis niche. Excluding antiviral drugs designed to halt SARS-CoV-2 replication, other drugs, either FDA-approved or suggested through basic research, could be systematically assigned to one of these classes. We observed that many anti-SARS-CoV-2 drugs could be included either in class III or IV as they interfere with the structural or physiological integrity of subcellular components, respectively. This perspective may contribute to our understanding of the relative efficacy of endocytosis-related inhibitors and support the optimization of their individual or combined antiviral potential against SARS-CoV-2. However, their selectivity, combined effects, and possible interactions with non-endocytic cellular targets need more clarification.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/metabolism , Endocytosis , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Cell Membrane/metabolism
3.
Front Microbiol ; 14: 1190463, 2023.
Article in English | MEDLINE | ID: covidwho-20231823

ABSTRACT

The ongoing SARS-CoV-2 pandemic and the influenza epidemics have revived the interest in understanding how these highly contagious enveloped viruses respond to alterations in the physicochemical properties of their microenvironment. By understanding the mechanisms and conditions by which viruses exploit the pH environment of the host cell during endocytosis, we can gain a better understanding of how they respond to pH-regulated anti-viral therapies but also pH-induced changes in extracellular environments. This review provides a detailed explanation of the pH-dependent viral structural changes preceding and initiating viral disassembly during endocytosis for influenza A (IAV) and SARS coronaviruses. Drawing upon extensive literature from the last few decades and latest research, I analyze and compare the circumstances in which IAV and SARS-coronavirus can undertake endocytotic pathways that are pH-dependent. While there are similarities in the pH-regulated patterns leading to fusion, the mechanisms and pH activation differ. In terms of fusion activity, the measured activation pH values for IAV, across all subtypes and species, vary between approximately 5.0 to 6.0, while SARS-coronavirus necessitates a lower pH of 6.0 or less. The main difference between the pH-dependent endocytic pathways is that the SARS-coronavirus, unlike IAV, require the presence of specific pH-sensitive enzymes (cathepsin L) during endosomal transport. Conversely, the conformational changes in the IAV virus under acidic conditions in endosomes occur due to the specific envelope glycoprotein residues and envelope protein ion channels (viroporins) getting protonated by H+ ions. Despite extensive research over several decades, comprehending the pH-triggered conformational alterations of viruses still poses a significant challenge. The precise mechanisms of protonation mechanisms of certain during endosomal transport for both viruses remain incompletely understood. In absence of evidence, further research is needed.

4.
Cell Insight ; 1(3): 100031, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2322381

ABSTRACT

During severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the viral proteins intimately interact with host factors to remodel the endomembrane system at various steps of the viral lifecycle. The entry of SARS-CoV-2 can be mediated by endocytosis-mediated internalization. Virus-containing endosomes then fuse with lysosomes, in which the viral S protein is cleaved to trigger membrane fusion. Double-membrane vesicles generated from the ER serve as platforms for viral replication and transcription. Virions are assembled at the ER-Golgi intermediate compartment and released through the secretory pathway and/or lysosome-mediated exocytosis. In this review, we will focus on how SARS-CoV-2 viral proteins collaborate with host factors to remodel the endomembrane system for viral entry, replication, assembly and egress. We will also describe how viral proteins hijack the host cell surveillance system-the autophagic degradation pathway-to evade destruction and benefit virus production. Finally, potential antiviral therapies targeting the host cell endomembrane system will be discussed.

5.
Microbiol Spectr ; 10(4): e0109722, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-2325199

ABSTRACT

Human adenovirus type 26 (HAdV26) has been recognized as a promising platform for vaccine vector development, and very recently vaccine against COVID-19 based on HAdV26 was authorized for emergency use. Nevertheless, basic biology of this virus, namely, pathway which HAdV26 uses to enter the cell, is still insufficiently known. We have shown here that HAdV26 infection of human epithelial cells expressing low amount of αvß3 integrin involves clathrin and is caveolin-1-independent, while HAdV26 infection of cells with high amount of αvß3 integrin does not involve clathrin but is caveolin-1-dependent. Thus, this study demonstrates that caveolin-1 is limiting factor in αvß3 integrin-mediated HAdV26 infection. Regardless of αvß3 integrin expression, HAdV26 infection involves dynamin-2. Our data provide for the first-time description of HAdV26 cell entry pathway, hence increase our knowledge of HAdV26 infection. Knowing that functionality of adenovirus vector is influenced by its cell entry pathway and intracellular trafficking, our results will contribute to better understanding of HAdV26 immunogenicity and antigen presentation when used as vaccine vector. IMPORTANCE In order to fulfill its role as a vector, adenovirus needs to successfully deliver its DNA genome to the host nucleus, a process highly influenced by adenovirus intracellular translocation. Thus, cell entry pathway and intracellular trafficking determine functionality of human adenovirus-based vectors. Endocytosis of HAdV26, currently extensively studied as a vaccine vector, has not been described so far. We present here that HAdV26 infection of human epithelial cells with high expression of αvß3 integrin, one of the putative HAdV26 receptors, is caveolin-1- and partially dynamin-2-dependent. Since caveolin containing domains provide a unique environment for specific signaling events and participate in inflammatory signaling one can imagine that directing HAdV26 cell entry toward caveolin-1-mediate pathway might play role in immunogenicity of this virus. Therefore, our results contribute to better understanding of HAdV26 infection pathway, hence, can be helpful in explaining induction of immune response and antigen presentation by HAdV26-based vaccine vector.


Subject(s)
Adenoviruses, Human , COVID-19 , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , COVID-19 Vaccines , Caveolin 1/genetics , Caveolin 1/metabolism , Clathrin/metabolism , Dynamin II/metabolism , Humans , Integrins/metabolism , Virus Internalization
6.
Journal of Biological Chemistry ; 299(3 Supplement):S608, 2023.
Article in English | EMBASE | ID: covidwho-2316061

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) targets mainly the respiratory tract. In addition to respiratory symptoms, many extrapulmonary manifestations were observed in the gastrointestinal tract and reported by SARS-CoV-2 patients, including abdominal pain, nausea, and diarrhea. SARS-CoV-2 binds initially to angiotensin-converting enzyme 2 (ACE2) on the host cell surface via its spike (S) protein before it undergoes endocytosis and fusion with the lysosomal membrane. The spike protein of SARS-CoV-2 is a heavily N- and O-glycosylated trimer. Glycosylation is an essential posttranslational modification in the life cycle of membrane and secretory proteins that affects their structural and functional characteristics as well as their trafficking and sorting patterns. This study aimed at elucidating the impact of glycosylation modulation on the trafficking of both S1 subunit and ACE2 as well as their interaction at the cell surface of intestinal epithelial cells. For this purpose, the S1 protein was expressed in COS-1 cells and its glycosylation modified using N-butyldeoxynojirimycin (NB-DNJ), an inhibitor of ER-located alpha-glucosidases I and II, and or 1-deoxymannojirimycin (dMM), an inhibitor of the Golgi-located alpha-mannosidase I. The intracellular and secreted S1 proteins were analyzed by endoglycosidase H treatment. Similarly, ACE2 trafficking to the brush border membrane of intestinal Caco-2 cells was also assessed in the presence or absence of the inhibitors. Finally, the interaction between the S1 protein and ACE2 was investigated at the surface of Caco-2 cells by co-immunoprecipitation. Our data show that NB-DNJ significantly reduced the secretion of S1 proteins in COS-1 cells, while dMM affected S1 secretion to a lesser extent. Moreover, NB-DNJ and dMM differentially affected ACE2 trafficking and sorting to the brush border membrane of intestinal Caco-2 cells. Strikingly, the interaction between S1 and ACE2 was significantly reduced when both proteins were processed by the glycosylation inhibitors, rendering glycosylation and its inhibitors potential candidates for SARS-CoV-2 treatment. This work has been supported by a grant from the German Research Foundation (DFG) grant NA331/15-1 to HYN. M.K. was supported by a scholarship from the Hannover Graduate School for Veterinary Pathobiology, Neuroinfectiology, and Translational Medicine (HGNI) and by the DFG grant NA331/15-1.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

7.
Adv Drug Deliv Rev ; 197: 114828, 2023 06.
Article in English | MEDLINE | ID: covidwho-2320056

ABSTRACT

Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.


Subject(s)
Nanomedicine , Nanoparticles , Humans , Nanomedicine/methods , Nanotechnology/methods , Nanoparticles/toxicity , Nanoparticles/chemistry , Lysosomes
8.
J Biochem ; 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2317296

ABSTRACT

Three dynamin isoforms play critical roles in clathrin-dependent endocytosis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells via clathrin-dependent endocytosis. We previously reported that 3-(3-chloro-10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-N,N-dimethylpropan-1-amine (clomipramine) inhibits the GTPase activity of dynamin 1, which is in mainly neuron. Therefore, we investigated whether clomipramine inhibits the activity of other dynamin isoforms in this study. We found that, similar to its inhibitory effect on dynamin 1, clomipramine inhibited the L-α-phosphatidyl-L-serine-stimulated GTPase activity of dynamin 2, which is expressed ubiquitously, and dynamin 3, which is expressed in the lung. Inhibition of GTPase activity raises the possibility that clomipramine can suppress SARS-CoV-2 entry into host cells.

9.
Allergy: European Journal of Allergy and Clinical Immunology ; 78(Supplement 111):321-322, 2023.
Article in English | EMBASE | ID: covidwho-2302756

ABSTRACT

Case report: Chronic urticaria is defined as the presence of urticaria for a period exceeding six weeks. Infections are known as possible triggers for urticaria manifestations, and, as such, SARS-CoV- 2 infection can be recognized as causative. An 8-year- old boy, with a previous history of idiopathic chronic urticaria, came to the Emergency Department for the appearance of generalized urticaria and lips angioedema associated with vomit and shortening of breath normal vital signs by age. Thus, due to the significant reaction, intravenous corticosteroids and antihistamines were promptly administered, with a rapid improvement of symptoms. Since the systemic reaction, the tryptase dosage was performed with the identification of an elevation at the time of the arrival and a complete normalization after the twelfth hour from the beginning of the reaction. Figure 1 shows the kinetic of the tryptase over time. SARS-CoV2 swab was performed before hospitalization and a positive test was identified. To investigate the etiopathogenesis of reaction, the patient was submitted to the extensive clinical, laboratory, and instrumental investigations that revealed only a positive in vitro basophil activation test (BAT) as evidence of functional serum histamine-releasing autoantibodies that are directed against IgE or high-affinity IgE receptors. The viral infection did not need any medication, and the urticaria was resolute in a couple of days. Daily treatment with oral antihistamines was then prescribed, and no further urticarious episodes occurred. A negative SARS-CoV- 2 swab was detected within 12 days of beginning symptoms. Approximately 40% of patients with idiopathic chronic urticaria have circulating antibodies versus IgE epitopes or the IgE receptor, but as it occurs in many autoimmune conditions, the presence of autoantibodies does not necessarily result in a disease phenotype. It is demonstrated that infections can elicit an autoimmune condition, and as our report shows, SARS-CoV2 could explain the reaction observed in our patient. The autoimmune precondition could have been the primer of the systemic reaction, pre-activating the mastocyte degranulation, as the tryptase elevation demonstrated. On the other hand, the SARS-CoV2 virus reducing the ACE2 expression, due to virus endocytosis, could create an imbalance in the RAS system, increasing the bradykinin levels. Bystander activation of pre-activated mastocytes caused by an inflammatory environment could explain the systemic reaction described above.

10.
Health Biotechnology and Biopharma ; 6(3):1-10, 2022.
Article in English | EMBASE | ID: covidwho-2294773

ABSTRACT

The approval of mRNA vaccine technique against COVID-19 opens a door to research and the creation of new drugs against different infectious pathologies or even cancer, since for several diseases the therapeutic options are limited, and different viral diseases are treated only symptomatically. For these reasons, this study proposed a hypothesis supported by biological studies, that it provides a theoretical basis for the possible development of a drug that used the mRNA technique and the ribonucleolytic action of a ribonuclease for a possible antiviral therapy, and analyzed a future perspective of this technique in order to provide a bibliographic basis on this hypothesis and motivate researchers to carry out biological studies on this topic.Copyright © 2022, Health Biotechnology and Biopharma. All rights reserved.

11.
Coronaviruses ; 3(3):23-34, 2022.
Article in English | EMBASE | ID: covidwho-2270458

ABSTRACT

The COVID-19 pandemic is raging across the globe, with the total active cases increas-ing each day. Globally over 63 million COVID-19cases and more than 1.4 million deaths have been reported to WHO. Throughout the world, academicians, clinicians and scientists are working tirelessly on developing a treatment to combat this pandemic. The origin of novel SARS-CoV-2 virus still remains foggy but is believed to have originated from a bat coronavirus RaTG13 with which it shares approximately 96% sequence similarity. In the present review, the authors have pro-vided an overview of the COVID-19 pandemic, epidemiology, transmission, developments related to diagnosis, drugs and vaccines, along with the genetic diversity and lifecycle of the SARS-CoV-2 based on the current studies and information available.Copyright © 2022 Bentham Science Publishers.

12.
Tanaffos ; 21(2):113-131, 2022.
Article in English | EMBASE | ID: covidwho-2261787

ABSTRACT

The 2019 novel coronavirus (SARS-CoV-2) causes severe pneumonia called COVID-19 and leads to severe acute respiratory syndrome with a high mortality rate. The SARS-CoV-2 virus in the human body leads to jumpstarting immune reactions and multi-organ inflammation, which has poorer outcomes in the presence of predisposing conditions, including hypertension, dyslipidemia, dysglycemia, abnormal adiposity, and even endothelial dysfunction via biomolecular mechanisms. In addition, leucopenia, hypoxemia, and high levels of both cytokines and chemokines in the acute phase of this disease, as well as some abnormalities in chest CT images, were reported in most patients. The spike protein in SARS-CoV-2, the primary cell surface protein, helps the virus anchor and enter the human host cells. Additionally, new mutations have mainly happened for spike protein, which has promoted the infection's transmissibility and severity, which may influence manufactured vaccines' efficacy. The exact mechanisms of the pathogenesis, besides molecular aspects of COVID-19 related to the disease stages, are not well known. The altered molecular functions in the case of immune responses, including T CD4+, CD8+, and NK cells, besides the overactivity in other components and outstanding factors in cytokines like interleukin-2, were involved in severe cases of SARS-CoV-2. Accordingly, it is highly needed to identify the SARS-CoV-2 bio-molecular characteristics to help identify the pathogenesis of COVID-19. This study aimed to investigate the bio-molecular aspects of SARS-CoV-2 infection, focusing on novel SARS-CoV-2 variants and their effects on vaccine efficacy.Copyright © 2022 NRITLD, National Research Institute of Tuberculosis and Lung Disease, Iran.

13.
Cancer Research Conference ; 83(5 Supplement), 2022.
Article in English | EMBASE | ID: covidwho-2255725

ABSTRACT

During the COVID-19 pandemics we have all witnessed the clinical importance of mRNA as current vaccines and future therapeutics. mRNA therapies have a potential to revolutionize cancer treatment. Delivery of mRNA requires lipid nanoparticles (LNP) to protect the cargo from degradation. mRNA has a negative charge and depends on positively charged lipids to be encapsulated in LNP. These lipids can be either ionizable at certain pH or constantly cationic. Even though previous studies had evaluated the formulation properties of ionizable and cationic LNP systems, there is the need to understand their specificity in terms of mRNA delivery and protein expression in breast cancer tumor microenvironment. The objective of this work was to assess the kinetics of LNP cellular uptake and mRNA expression inv breast cancer (BC) cells and fibroblasts, the most frequent cell type in the tumor microenvironment cells, while studying the mechanisms involved in differential behaviors of LNP formulated with cationic and ionizable lipids. To achieve this goal mRNA-LNP containing ionizable lipids (LNP-A) and cationic lipids (LNP-B) were designed and formulated using Nanoassemblr Benchtop microfluidics mixer (Precision NanoSystems). mRNA-LNP were characterized for size, zeta potential using dynamic light scattering (DLS) and mRNA encapsulation efficiency using RiboGreen assay. LNP were tagged with rhodamine lipid to investigate the uptake kinetic and a reporter GFP mRNA to evaluate mRNA expression in murine 4T1 and human MCF7, MDA-231, SUM-159 and T47D breast cancer cells and BJ fibroblasts. Live fluorescence microscopy imaging, IncuCyte S3, was used to determine the LNP uptake and GFP mRNA expression. In vitro biocompatibility was assessed with WST-1 assay. Additionally, expression of mRNA delivered from LNP in tumor microenvironment was evaluated in vivo in a syngeneic 4T1 breast cancer model using mRNA luciferase and IVIS imaging. mRNA-LNPs possessed an average diameter of 77 - 107 nm, narrow size distribution, neutral zeta potential and high mRNA encapsulation efficiency (>94%). Our results demonstrated that mRNA expression was higher in breast cancer cells when delivered from LNP-A formulation and in BJ fibroblasts when delivered from LNP-B. LNP-A, the ionizable LNP, was tested in the breast cancer cells to confirm the efficacy of the delivery. The highest transfection efficacy, from high to low, T-47D, MCF7, SUM-159, 4T1 and MDA-231.We have further investigated the cellular uptake mechanisms of LNP using uptake pathway inhibitors for caveolae endocytosis, clathrin endocytosis, and phagocytosis. Our data confirm that there are differences in mechanisms that govern the uptake of mRNA LNP in breast cancer cells and fibroblasts. Clathrin-mediated endocytosis was active in 4T1 breast cancer cells for ionizable and cationic LNP. Interestingly, despite in vitro differences in uptake and mRNA expression, in vivo results show that both formulations efficiently delivered luciferasemRNA in the tumor microenvironment. Histology results demonstrated similar luciferase expression for both LNP in tumors. Additionally, we were able to confirm the prominent presence of fibroblast and similar distribution in the 4T1 subcutaneous model which could explain the similar efficacy of cationic and ionizable LNP. Understanding uptake and mRNA expression of different LNP formulations in the tumor microenvironment can help in achieving the necessary protein expression for breast cancer therapies. Furthermore, determining the most efficient carrier in early stages may reduce the time required for clinical translation. Acknowledgement: This research was supported in part by CPRIT Core for RNA Therapeutics and Research.

14.
VacciMonitor ; 32 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2284839

ABSTRACT

The coronavirus disease-19 pandemic with the characteristics of asymptomatic condition, long incubation period and poor treatment has influenced the entire globe. Coronaviruses are important emergent pathogens, specifically, the recently emerged sever acute respiratory syndrome coronavirus 2, the causative virus of the current COVID-19 pandemic. To mitigate the virus and curtail the infection risk, vaccines are the most hopeful solution. The protein structure and genome sequence of SARS-CoV-2 were processed and provided in record time;providing feasibility to the development of COVID-19 vaccines. In an unprecedented scientific and technological effort, vaccines against SARS-CoV-2 have been developed in less than one year. This review addresses the approaches adopted for SARS-CoV-2 vaccine development and the effectiveness of the currently approved vaccines.Copyright © 2023, Finlay Ediciones. All rights reserved.

15.
Coronaviruses ; 3(6) (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2280701

ABSTRACT

Fruit, vegetables, and green tea contain quercetin (a flavonoid). Some of the diet's most signifi-cant sources of quercetin are apples, onions, tomatoes, broccoli, and green tea. Antioxidant, anticancer, anti-inflammatory, antimicrobial, antibacterial, and anti-viral effects have been studied of quercetin. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, ribonucleic acid (RNA) polymer-ase, and other essential viral life-cycle enzymes are all prevented from entering the body by quercetin. Despite extensive in vitro and in vivo investigations on the immune-modulating effects of quercetin and vitamin C treatment. 3-methyl-quercetin has been shown to bind to essential proteins necessary to convert minus-strand RNA into positive-strand RNAs, preventing the replication of viral RNA in the cytoplasm. Quercetin has been identified as a potential SARS-CoV-2 3C-like protease (3CLpro) suppressor in recent molecular docking studies and in silico assessment of herbal medicines. It has been demonstrated that quercetin increases the expression of heme oxygenase-1 through the nuclear factor erythroid-related factor 2 (Nrf2) signal network. Inhibition of heme oxygenase-1 may increase bilirubin synthesis, an endoge-nous antioxidant that defends cells. When human gingival fibroblast (HGF) cells were exposed to lipo-polysaccharide (LPS), inflammatory cytokine production was inhibited. The magnesium (Mg+2) cation complexation improves quercetin free radical scavenging capacity, preventing oxidant loss and cell death. The main objective of this paper is to provide an overview of the pharmacological effects of quercetin, its protective role against SARS-CoV-2 infection, and any potential molecular processes.Copyright © 2022 Bentham Science Publishers.

16.
Comput Struct Biotechnol J ; 19: 1933-1943, 2021.
Article in English | MEDLINE | ID: covidwho-2268879

ABSTRACT

Coronavirus disease 2019 is a kind of viral pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the mechanism whereby SARS-CoV-2 invades host cells remains poorly understood. Here we used SARS-CoV-2 pseudoviruses to infect human angiotensin-converting enzyme 2 (ACE2) expressing HEK293T cells and evaluated virus infection. We confirmed that SARS-CoV-2 entry was dependent on ACE2 and sensitive to pH of endosome/lysosome in HEK293T cells. The infection of SARS-CoV-2 pseudoviruses is independent of dynamin, clathrin, caveolin and endophilin A2, as well as macropinocytosis. Instead, we found that the infection of SARS-CoV-2 pseudoviruses was cholesterol-rich lipid raft dependent. Cholesterol depletion of cell membranes with methyl-ß-cyclodextrin resulted in reduction of pseudovirus infection. The infection of SARS-CoV-2 pseudoviruses resumed with cholesterol supplementation. Together, cholesterol-rich lipid rafts, and endosomal acidification, are key steps of SARS-CoV-2 required for infection of host cells. Therefore, our finding expands the understanding of SARS-CoV-2 entry mechanism and provides a new anti-SARS-CoV-2 strategy.

17.
Mol Biol Rep ; 50(5): 4645-4652, 2023 May.
Article in English | MEDLINE | ID: covidwho-2263419

ABSTRACT

Members of the Numb-associated kinase family of serine/threonine kinases play an essential role in many cellular processes, such as endocytosis, autophagy, dendrite morphogenesis, osteoblast differentiation, and the regulation of the Notch pathway. Numb-associated kinases have been relevant to diverse diseases, including neuropathic pain, Parkinson's disease, and prostate cancer. Therefore, they are considered potential therapeutic targets. In addition, it is reported that Numb-associated kinases have been involved in the life cycle of multiple viruses such as hepatitis C virus (HCV), Ebola virus (EBOV), and dengue virus (DENV). Recently, Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to threaten global health. Studies show that Numb-associated kinases are implicated in the infection of SARS-CoV-2 which can be suppressed by Numb-associated kinases inhibitors. Thus, Numb-associated kinases are proposed as potential host targets for broad-spectrum antiviral strategies. We will focus on the recent advances in Numb-associated kinases-related cellular functions and their potential as host targets for viral infections in this review. Questions that remained unknown on the cellular functions of Numb-associated kinases will also be discussed.


Subject(s)
COVID-19 , Hepatitis C , Male , Humans , SARS-CoV-2/metabolism , Protein Serine-Threonine Kinases/metabolism , Endocytosis , Antiviral Agents , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
18.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2267330

ABSTRACT

A hallmark of acute respiratory distress syndrome (ARDS) is an accumulation of protein-rich alveolar edema that impairs gas exchange and leads to worse outcomes. Thus, understanding the mechanisms of alveolar albumin clearance is of high clinical relevance. Here, we investigated the mechanisms of the cellular albumin uptake in a three-dimensional culture of precision-cut lung slices (PCLS). We found that up to 60% of PCLS cells incorporated labeled albumin in a time- and concentration-dependent manner, whereas virtually no uptake of labeled dextran was observed. Of note, at a low temperature (4 °C), saturating albumin receptors with unlabeled albumin and an inhibition of clathrin-mediated endocytosis markedly decreased the endocytic uptake of the labeled protein, implicating a receptor-driven internalization process. Importantly, uptake rates of albumin were comparable in alveolar epithelial type I (ATI) and type II (ATII) cells, as assessed in PCLS from a SftpcCreERT2/+: tdTomatoflox/flox mouse strain (defined as EpCAM+CD31-CD45-tdTomatoSPC-T1α+ for ATI and EpCAM+CD31-CD45-tdTomatoSPC+T1α- for ATII cells). Once internalized, albumin was found in the early and recycling endosomes of the alveolar epithelium as well as in endothelial, mesenchymal, and hematopoietic cell populations, which might indicate transcytosis of the protein. In summary, we characterize albumin uptake in alveolar epithelial cells in the complex setting of PCLS. These findings may open new possibilities for pulmonary drug delivery that may improve the outcomes for patients with respiratory failure.


Subject(s)
Alveolar Epithelial Cells , Clathrin , Mice , Animals , Alveolar Epithelial Cells/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Clathrin/metabolism , Lung/metabolism , Epithelial Cells/metabolism , Serum Albumin/metabolism , Pulmonary Alveoli/metabolism
19.
J Community Hosp Intern Med Perspect ; 12(6): 89-94, 2022.
Article in English | MEDLINE | ID: covidwho-2267005

ABSTRACT

On January 30, 2020, the COVID-19 epidemic was declared an international public health emergency by the World Health Organization. Given the growing impact of the pandemic, there is great interest in finding potential targets for treating infected or hospitalized COVID-19 patients. Therapeutic studies have been conducted on pre-existing drugs, which vary by country, including anti-malarial agents, antiviral agents, and convalescent plasma. However, many of these agents are ineffective at reducing mortality or only shorten the severity or duration of COVID-19 illness in hospitalized patients. As such, other alternatives for treating COVID-19 are being investigated. One such target of interest has been clathrin-dependent endocytosis (CDE). Clathrin-dependent endocytosis is the most commonly observed mechanism of viral entry into cells. However, there have been no published studies to date on CDE inhibition strategies against COVID-19. One such target is Rlip or RLIP76 (human gene RALBP1, 18p11.22). Among its many functions, Rlip is a stress-protective, Ral-regulated ATPase of the mercapturic acid pathway that transports glutathione-electrophile conjugates of electrophilic toxins, which are precursors of mercapturic acid that precedes de-glutamylation by gamma-glutamyl transferase. Rlip is also regulated by several G-proteins that coordinate movement of cells, organelles, membranes, cytoskeleton, macromolecules, and other small molecules. Previous studies have link Rlip in the pathogenesis of several viral illness. In this paper, we want to propose that RLIP76 (Rlip or RALBP1) may be a novel target for treating SARS-CoV-2 viral infections.

20.
Adv Sci (Weinh) ; 10(12): e2206187, 2023 04.
Article in English | MEDLINE | ID: covidwho-2273826

ABSTRACT

Lipid nanoparticles (LNPs) are currently used to transport functional mRNAs, such as COVID-19 mRNA vaccines. The delivery of angiogenic molecules, such as therapeutic VEGF-A mRNA, to ischemic tissues for producing new blood vessels is an emerging strategy for the treatment of cardiovascular diseases. Here, the authors deliver VEGF-A mRNA via LNPs and study stoichiometric quantification of their uptake kinetics and how the transport of exogenous LNP-mRNAs between cells is functionally extended by cells' own vehicles called extracellular vesicles (EVs). The results show that cellular uptake of LNPs and their mRNA molecules occurs quickly, and that the translation of exogenously delivered mRNA begins immediately. Following the VEGF-A mRNA delivery to cells via LNPs, a fraction of internalized VEGF-A mRNA is secreted via EVs. The overexpressed VEGF-A mRNA is detected in EVs secreted from three different cell types. Additionally, RNA-Seq analysis reveals that as cells' response to LNP-VEGF-A mRNA treatment, several overexpressed proangiogenic transcripts are packaged into EVs. EVs are further deployed to deliver VEGF-A mRNA in vitro and in vivo. Upon equal amount of VEGF-A mRNA delivery via three EV types or LNPs in vitro, EVs from cardiac progenitor cells are the most efficient in promoting angiogenesis per amount of VEGF-A protein produced. Intravenous administration of luciferase mRNA shows that EVs could distribute translatable mRNA to different organs with the highest amounts of luciferase detected in the liver. Direct injections of VEGF-A mRNA (via EVs or LNPs) into mice heart result in locally produced VEGF-A protein without spillover to liver and circulation. In addition, EVs from cardiac progenitor cells cause minimal production of inflammatory cytokines in cardiac tissue compared with all other treatment types. Collectively, the data demonstrate that LNPs transform EVs as functional extensions to distribute therapeutic mRNA between cells, where EVs deliver this mRNA differently than LNPs.


Subject(s)
COVID-19 , Extracellular Vesicles , Mice , Animals , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , COVID-19/metabolism , Extracellular Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL